BluB/CobT2 fusion enzyme activity reveals mechanisms responsible for production of active form of vitamin B12 by Propionibacterium freudenreichii

نویسندگان

  • Paulina Deptula
  • Petri Kylli
  • Bhawani Chamlagain
  • Liisa Holm
  • Risto Kostiainen
  • Vieno Piironen
  • Kirsi Savijoki
  • Pekka Varmanen
چکیده

BACKGROUND Propionibacterium freudenreichii is a food grade bacterium that has gained attention as a producer of appreciable amounts of cobalamin, a cobamide with activity of vitamin B12. Production of active form of vitamin is a prerequisite for attempts to naturally fortify foods with B12 by microbial fermentation. Active vitamin B12 is distinguished from the pseudovitamin by the presence of 5,6-dimethylbenzimidazole (DMBI) as the lower ligand. Genomic data indicate that P. freudenreichii possesses a fusion gene, bluB/cobT2, coding for a predicted phosphoribosyltransferase/nitroreductase, which is presumably involved in production of vitamin B12. Understanding the mechanisms affecting the synthesis of different vitamin forms is useful for rational strain selection and essential for engineering of strains with improved B12 production properties. RESULTS Here, we investigated the activity of heterologously expressed and purified fusion enzyme BluB/CobT2. Our results show that BluB/CoBT2 is responsible for the biosynthesis of the DMBI base and its activation into α-ribazole phosphate, preparing it for attachment as the lower ligand of cobalamin. The fusion enzyme was found to be efficient in metabolite channeling and the enzymes' inability to react with adenine, a lower ligand present in the pseudovitamin, revealed a mechanism favoring the production of the active form of the vitamin. P. freudenreichii did not produce cobalamin under strictly anaerobic conditions, confirming the requirement of oxygen for DMBI synthesis. In vivo experiments also revealed a clear preference for incorporating DMBI over adenine into cobamide under both microaerobic and anaerobic conditions. CONCLUSIONS The herein described BluB/CobT2 is responsible for the production and activation of DMBI. Fusing those two activities results in high pressure towards production of the true vitamin B12 by efficiently activating DMBI formed within the same enzymatic complex. This indicates that BluB/CobT2 is the crucial enzyme in the B12 biosynthetic pathway of P. freudenreichii. The GRAS organism status and the preference for synthesizing active vitamin form make P. freudenreichii a unique candidate for the in situ production of vitamin B12 within food products.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fed-Batch Production of a Fermented Beverage Containing Vitamin B12

Production of fermented functional foods containing micronutrients is required for their health beneficial properties. The impact of 11 process variables on vitamin B12 production in a dairy beverage containing propionic acid was investigated. Propionibacterium freudenreichii ssp. shermanii was applied in a 3-l fermentor in the fed-batch fermentation system. The most suitable conditions for...

متن کامل

Food-Like Growth Conditions Support Production of Active Vitamin B12 by Propionibacterium freudenreichii 2067 without DMBI, the Lower Ligand Base, or Cobalt Supplementation

Propionibacterium freudenreichii is a traditional dairy bacterium and a producer of short chain fatty acids (propionic and acetic acids) as well as vitamin B12. In food applications, it is a promising organism for in situ fortification with B12 vitamin since it is generally recognized as safe (GRAS) and it is able to synthesize biologically active form of the vitamin. In the present study, vita...

متن کامل

In situ production of active vitamin B12 in cereal matrices using Propionibacterium freudenreichii

The in situ production of active vitamin B12 was investigated in aqueous cereal-based matrices with three strains of food-grade Propionibacterium freudenreichii. Matrices prepared from malted barley flour (33% w/v; BM), barley flour (6%; BF), and wheat aleurone (15%; AM) were fermented. The effect of cobalt and the lower ligand 5,6-dimethylbenzimidazole (DMBI) or its natural precursors (ribofla...

متن کامل

Ultra-high performance liquid chromatographic and mass spectrometric analysis of active vitamin B12 in cells of Propionibacterium and fermented cereal matrices.

A sensitive and selective method is needed to analyse in situ produced vitamin B12 in plant-based materials, potential new dietary sources of vitamin B12. A UHPLC/UV method was developed and validated for the determination of human active vitamin B12 in cell extracts of Propionibacterium freudenreichii subsp. shermanii and after immunoaffinity purification in extracts of cereal matrices ferment...

متن کامل

Complete genome sequence of Propionibacterium freudenreichii DSM 20271(T).

Propionibacterium freudenreichii subsp. freudenreichii DSM 20271(T) is the type strain of species Propionibacterium freudenreichii that has a long history of safe use in the production dairy products and B12 vitamin. P. freudenreichii is the type species of the genus Propionibacterium which contains Gram-positive, non-motile and non-sporeforming bacteria with a high G + C content. We describe t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2015